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SINGLE V3. TRIPLE ADDRESS COMPUTING MACHINES

Prepared by:
Calvin C. Elgot

ABSTRACT: The question: "Which is more desirable a single address or e
triple address computing machine?"” has been discussed, often with fervor
from an engineering, economic, statistical and "personal preference"” point

of view. We limit our consideration to the question: "Which, of the two
types of machines, requires fewer words to specify a sequence of instructionst"
Utilizing a slightly idealized, (but we believe physically realizable), notion
of a single address machine we obtain a partial answer to this question by
proving a mathematical theorem, (page 5). Our result is embodied in Corollery
2, page 6. The strength of the result suggests that "in general," i.e. from

a statistical point of view, fewer words are required t» code by means of
(idealized) single address than by triple address.
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In tiuis report there is advanced a basic formulation and solution of the problem
"Which electronic computer design is best, that with a multiple address system
or that with a single address system.” The study has been carried out as a part
of task NR-Oikk-003, Rumerical Analysis and Theoretical Mechanics.
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Captain, USN
Commnander
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SINGLE VS. TRIPLE ADIRESS COMPUTING MACHINES
" 1. INTRODUCTION

By a machine word of a triple address machine we mean a sequence of four
elements consisting of an operation code, first operand address, second operand
address and storzge address, respectively. By a machine half-word of a single
eddress machine we mean a sequence of two elements, the first being an operation
code, the second an operand sddress.

By an ggg ration i< meant an operator together with the numbers on which it
operates (" ar operator; "1+ 2" is an operation). Assume a sasquence of
distinct arithmctlc operations specified. Then the number of machine words, in
a triple address machine, required to specify this sequence of operations 1is
equal to the number of operations involved in the sequence. For example, if the
sequence of operatiozns is:

(1) (a®v)

22) (c.d)

3) (2c-d)—e)_

(4) (((c.a)-e) / (a*b))

22; 5 TS’)\(H(C d)-e) [ (@*)))} (X)) = (v/x)

then six triple addres: machine words are required to specify this seguence.

We require our single address machine to have the property that the result
of any particulur operation is immedietely uvailable, (i.e. without any prellmi-

nary (programmed) shifting from one register to another), for possible use with
the next operator. We assume tbat our single addrecs machine is capable o1
performing inverse subtraction, (5), ana inverse division. (6). Whether or not
the triple address machine can perform these operations or not is inconseque..tial.
We allow, too, the possibility of our machines performing unary operations.

We sometimes interpret (aob) as the result of applying the operator ©Ob to
the operand, (or argument), a. Witn this interpretation in mind we rather imsgine
our single address machine has v vegister, called, say, the argument register
vhich houses the argument of the function which the machine is about to compute.
When a function is computed the result is directed into the argument regis:ier
where it 1s aveilable for possible use with the next function. When a nuxber 1c
directed into the argument register it displaces any number which may have w:ien
there.

We say that an operation utilizes the preceding result 1f one of its cperaads
is the preccding result. This situation is indicated in the tahle below by "
under "P"; the contrary situation by "-" under "P."

The number of machine words (by definition equal to one half tne nwates of
machine half-words), required to specify one of a sequarcc of operations in =
single address machine is given ty the following table:
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¥
(1) + - &
(&) 2 + 1
(3) - - 1

(8) - + 13

A "+" under "S" indicates the result of the operation is to be stored;
a "-" Indicates the contrary. Urder "W" is given the corresponding number of
machine wcrds required to specify the operation in a single address machine.
We see from the table a single address machine requires more or less machipe
words than o triple eddregs mechine to specify a sequence of overations ac-
cording as the number of times the result of an ope.ation is stored in more
or less than the nuuber of times the preceding result is utilized. We prove
the first alternative does not hold, assuming the result of the last operation
in the sequence is not stored.

We indicate the macinine helf-words which may be used to specify the sequence
of six operations given above with our single address machine:

Case Of Tuble

(1) Transfer a to argument register. %)
Add Tt to a.
Store result.

(2) Transfer ¢ tn argument register. (3)
Multiply ¢ by d.

(3) subiract e frou previous result. (1)

(4) Divide previous result by (a+b). (2)

Store result.

(5) Trensfer f to ergument register (3)
Inverse subtrect g from f.

(6) Inverse divide previous result by (1)
(%) result.

Fuch line above indicates a machine half-word. Thus five and one half wvords
are required to specify this sequence of operations by means of o uingle address
machine.

If T 1s the number of machine words required for a triple address machine,
if U 41s the number of wachine words reguired for a single addrecs machine,
if P 1is the number of times the preceding result is utilized,

if S5 1is the number of times the result of an operation is stored then

T-US3 3 (P-3)
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and this is true in general, (for arbitrary sequences of distinct operations).
For each time a preceding result is utilized and the result not stored single
address "galns" 5 word over triple address, while if preceding result is not
used and result is stored, single address ‘'loses" 4 word to triple address.
Ie the other two cases there is no "gain" or "lOSs. We shall prove ¥ = S.

2. TRANSITION TO FORMALITY

We introduce intermediate notions of SAO and TSAO for the purpose of making
gradual the transition from ordinery" notation to the prefixed operator notation*
which we employ. We define SAO as follows:

1) A letter is an SA0.

2) If F is a SAO and u a unary operator then u(F) is a 5a0.

3; If F and G are SAQ's and o a binary operator then (FoG) is a SAO.

4) A sequence of numbers and unary and binary operators is a SAO only when
this follows from (1), (2), (3).

we define a transformed SAO, (TSAO), by means of rules (1), (2), (4), (with sAC
replaced by TSAO and "(3)" replaced by "(3)"), and

(3') If F and G are TSAO's and b a binary operator then b(F,G) is a TSAC.
It is clear there is a biunique correspondence between SAO's and TSAO's.

For example (ﬂ(a+(b c)))+d) is a SAO and the corresponding TSAC is
+0/ (*(a,.(v,c))),d). The TSAO with parentheses and commes deleted is
N+ .becd.

We claim that deleting all parentheses and commas in a TSAO creates no
ambiguity in interpreting the "deleted TSAO." Otherwise stated if two distinct
PSAO's are "deleted," the resultant sequences of symbols are distinct. A
"deleted TSAO" is a word as defined below if we identify the operators with
connectives (of the alphabeu mentioned below) and use letters a4, as below.

The corollar to the theorem of the next section ther Jjustifies our claim. The
"deleted TSAO" corresponding to ibe rirst example is:

\ifg/—.cde*nb

Order may be introduced into the "deleted TSAC," (thus inducing order into
the TSAO and .the SAQ), and parentheses may be properly inserted to recover the
original TSAO as follows:

Read from right to left until the first operator is encountered, then count
two letters, (one letter if the operator is unary), trom left to right and put
parentheses around the two, (or one) letters separating the letters with a comms.
The operator together with the letters is then reckoned as a single letter and
the process 1is iterated. Using this order of operations we note that the result
of an operation must be stored if and only if there is a next operation and the
number of letterc between the operator and the next, (from right to left),

#This notation is generally attributed to Iukasiewicz.

2
2
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operator is two or one depending on whetler the next operator is btinary or
unary. (This motivates the definition of long segment below.) An operator
utilizes the previous result if and only if there is a previous operator and
®here are less than two or one letters betwecn the operator and tne previous
operator depending on whether the operator is binary or unary. (This moti-
vates the definition of short segment below.)

3. A SIMPLE LANGU/GE*
let luae alghabet consist of:

the letters - 8y, 85, a3, *rr
i
the connectives - fJ I3 = 1,2, 3;

A finite, possibly null, sequence of members of the slphabet 15 called a
string. The length of the string is the number of elements of the sequence.

If A is a string of 1en%§h m and B a string of length n then AB is the siring
of length m + n whose i'D member, /< (= , is the i*] member of A and

whose (m+J)th member, /<7< n, is the J! member of B. We define a word by

induction on the length c¢f a string. A string, S, .s a word if and only if
one of the following holds:

(1) s = a,

integiii Wy, W,,.., W, are words and S = fé W) W, ...W where i, n are positive

The alphabet together with the rules of word formation and a suitadle
interpretation or words is a simple languace.

The rank R(S) of a string S is defined as follows:
(l)R(ai)=-1

5 % e s 3

(2) R (fn) n-21

(3) £ s = 5) 35, (8, , 5, strings), R(S) = R(5,) + R(S,)
(4) The rank of the null -tring is zero.

If S = Sl 52 then Sl is called a head of 5. If 82 is not nu)l the head is
called proper.

Theorend* A string S is a word if acd caly if the rank of every proper head of
S is non-negative and the rank of S is -1l.

¥Rosenbioom, 'The Klements of Mathematical Logic," pp 152-7.
##Ibid, p 154.
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Coro}ggfx If W= S1 32 is a word and S2 is not null then there is one aad

only one word which is a head of 52, (where S, end 52 are strings).

1

L. THE THEOREM

In what follows our alphabet consists of the single letter a and the two
connectives 1, 2 of degrees and one and two respectively.

Examples of Words

1) 1a

(2) 22 =

(3) 21a2aa

() 2222222acaaaaalaa
Bxamples of Strings Which Are Not Words

(5) 1

(6) ala

(7) 2a2aa2a

We observe if W is a word then W = S a; if, further W # a then W = nT where

S and T are strings and n is e connective. (This is immediate from the
definiticn.)

We define a segment of a siring S as a string of the form mTn if
S*2UmTn Vand m and n are connectives wrere U, V, T, are strings, T teing
a string, pocsibly null, of a's only. A segment 5 1s called a long segment
1f and only if one of the following holds:

S=1al
S=22aal

vhere U i1s a string; a segment is called a short segment if it is not a long
segment .

No segments occur in examples (1), (2), (5), (6). 1In example {3) g =21
is a short segment, T = 1 a 2 is a long segment. 1In example (7) S = 2a 2 is &
short segment while 2 a a 2 1s a long segment. In () S =2aaaaaaa?is
a long segment. The "number of short (long) segmenis" shall always mean the

cumber of short (long) segments counting rultiplicity. In (4) there ure six
short segments.

Theorex In every word W the number of shori segments is not exceeded by the
number of long segments.

\1
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Proof We use induction on ihe length of W.

We denote the number of short segments occurring in W by ws and the number
of long segmentc by W;. If WsaorW=1laorWs=2aa the validity of the
theorem is obvious. We have already observed and now we emphasize that if

W / a then W is of the form Sa = n T where n is a connective and S, T strings.
We consider the following cases:

(1) Welw wéa

(2) ws2WwW', W fa

(3) W= 2aW, W ¢ a vhere W,W,W" are words.
Ccase (1): Clearly

's = 1 +w's while W = W'l

s0 that using the inductive assumpiicn the theorem is valid in this case.

Case (2): W, Z 1+twW + W

£ "
W= 1w, reY

Indeed equality actually holds in the first case and if W # a also in the second

case, as may be seen from the corollary above. The theorem follows again with
the use of the inductive assumptioa.

Case §3!: Wg X +w;

wl 'ui

ag before the theerem follows which cormpletes the proof.

Corollary 1 If W ¢ a then
TZ2S5+1

TS 2P +1 vhere S = nunber of long segments of W
P = number of short scgments of W

T = total number of connectives in W
Proof If W § a then
P+S +1s=17

Corcllary 2 In the notation of page 2, T Z U.
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Proof P = W, , 5 e W from raragraph immedistely preceding section 3;

T - U = 4 (P-S) from page 2 and Wy Z W, from the theorem.

Remarks

(1) The theorem immediately adove fails if we allow connectives of degree
greater than two. Indeed if n > 2 1s a connective of degree n then

~

nZ2aa2aa...2aa, (2aaoccurring n times),

is a word with one short segment and (n-1) long segments, (extending the notion
of long and short segment in obvious fashion).

(2) If a sequence of, (not necessarily distinct), operations are given we
associate with it a sequence of SAO's as follows:

0f all "sub-SAQO's" which occur more than once we seek one of minimum
"length" and record it, replacing all occurrences of this SAO by a single
letter. I there are other "multiple occurring" Gi0's of the same "length"
we record them one by one replacing all occurrences of each by distinct letters
distinct from the first. This process is iterated until the remaining SAO
consists of distinct operations. We then have a sequence of distinct sequences
of distinct operations (in e slightly extended sense since we are now admitting

letters). If R is the "length" of the scquence of sequences then our result
modifies to

3 (R-1)+P 25

for the resvlt of each SAO in the sequence of SAO's must be stored, except for
the last.

(3) A dichotomous conditional transfer does not require more single address

machine-words than triple address muchine-words while a trichotomous conditional
transfer may.

(4) As a by-product of the techniques employed one notes that a machine
could be built, (or a subroutine on an existing machine could be constructed),
which would be capable of interpreting a sequence of syzbols as a sequence of
arithmetic operations and capable, too, of deciding by itself when and where
the resuit of an operation must be stored.

(5) The ordered SAO obtained by introducing order into the SAO in accordance
with the rule given on page 2, may be regarded formally as a sequence of SAO's.
Every ordered SAQO corresponds to a sequenee of arithmetic operations but the
converse is not true. ‘his fact doesn't effect our conclusion since the machine
word requirement in s triple address machine does not depend on the order in
vhich the operations are performed. It is easy to see, however, that a neoeseary

and sufficient condition for a sequence of arithmetic operations, written say as on

page 1, to correspond to an ordered SAO 1s that every binary operator utilizing
one (or two) previous result(s) as operand(s) must obtain the result(s) from the

previous first (and second) line(s) and every unary operator utilizing a previous
result must obtain it from the precedinz line.

]
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(6) In stating the conditioms, (top page 4), under which the preceding

result i1s utilized we have allowed replacing operations like xoy by yOx if
the tvo .re equal. (Here "o" and "0" stand for operators.)

If we replace each xoy, vith y the previous reeult,by yOx in the given
ordered SAO and then write the corresponding TSAD, the corresonding "deleted
TSAO" and the corresponding word, then all short segments of this word will
be of the form 22, 21, 12, or 1l1. (None will be of the form 2a2 or 2al.)
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